Multi-channel surface EMG classification using support vector machines and signal-based wavelet optimization

نویسندگان

  • Marie-Françoise Lucas
  • Adrien Gaufriau
  • Sylvain Pascual
  • Christian Doncarli
  • Dario Farina
چکیده

The study proposes a method for supervised classification of multi-channel surface electromyographic signals with the aim of controlling myoelectric prostheses. The representation space is based on the discrete wavelet transform (DWT) of each recorded EMG signal using unconstrained parameterization of the mother wavelet. The classification is performed with a support vector machine (SVM) approach in a multichannel representation space. The mother wavelet is optimized with the criterion of minimum classification error, as estimated from the learning signal set. The method was applied to the classification of six hand movements with recording of the surface EMG from eight locations over the forearm. Misclassification rate in six subjects using the eight channels was (mean S.D.) 4.7 3.7% with the proposed approach while it was 11.1 10.0% without wavelet optimization (Daubechies wavelet). The DWT and SVM can be implemented with fast algorithms, thus, the method is suitable for real-time implementation. # 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Analysis of Neuromuscular Disorders Using Statistical and Entropy Metrics on Surface EMG

This paper introduces the surface electromyogram (EMG) classification system based on statistical and entropy metrics. The system is intended for diagnostic use and enables classification of examined subject as normal, myopathic or neuropathic, regarding to the acquired EMG signals. 39 subjects in total participated in the experiment, 19 normal, 11 myopathic and 9 neuropathic. Surface EMG was r...

متن کامل

Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method

In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008